Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy.
نویسندگان
چکیده
Photosynthetic light-harvesting antennae direct energy collected from sunlight to reaction centers with remarkable efficiency and rapidity. Despite their common function, the pigment-protein complexes that make up antenna systems in different types of photosynthetic organisms exhibit a wide variety of structural forms. Some individual organisms express different types of complexes depending on growth conditions. For example, purple photosynthetic bacteria Rp. palustris preferentially synthesize light-harvesting complex 4 (LH4), a structural variant of the more common and widely studied LH2, when grown under low-light conditions. Here, we investigate the ultrafast dynamics and energy level structure of LH4 using two-dimensional (2D) electronic spectroscopy in combination with theoretical simulations. The experimental data reveal dynamics on two distinct time scales, consistent with coherent dephasing within approximately the first 100 fs, followed by relaxation of population into lower-energy states on a picosecond time scale. We observe excited state absorption (ESA) features marking the existence of high-energy dark states, which suggest that the strongest dipole-dipole coupling in the complex occurs between bacteriochlorophyll transition dipole moments in an in-line geometry. The results help to refine the current understanding of the pigment organization in the LH4 complex, for which a high-resolution crystal structure is not yet available.
منابع مشابه
Two-Dimensional Electronic Spectroscopy of the Low-Light Adapted Light Harvesting Complex 4
Two-dimensional electronic spectroscopy of Light Harvesting Complex 4 from photosynthetic bacteria reveals excited state dynamics on two timescales and resolves exciton states with little to no oscillator strength. The results suggest a molecular structure in which the pigment dipole organization within the circular complex has more tangential than radial character.
متن کاملPathways of energy flow in LHCII from two-dimensional electronic spectroscopy.
Photosynthetic light-harvesting complexes absorb energy and guide photoexcitations to reaction centers with speed and efficacy that produce near-perfect efficiency. Light harvesting complex II (LHCII) is the most abundant light-harvesting complex and is responsible for absorbing the majority of light energy in plants. We apply two-dimensional electronic spectroscopy to examine energy flow in LH...
متن کاملStructure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II
In natural light-harvesting systems, pigment-protein complexes (PPC) convert sunlight to chemical energywith near unity quantum efficiency. PPCs exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this Perspective, we examine the design principles of PPCs, focussing on the major light-harvesting complex of Photosystem II (LHCII), the most a...
متن کاملTwo-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex.
Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dyna...
متن کاملElucidation of the timescales and origins of quantum electronic coherence in LHCII.
Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment-protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 18 شماره
صفحات -
تاریخ انتشار 2009